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Abstract
• Autoregressive models capture detailed information about future events.  
• To-date, investigation is centered solely on next-event prediction.  
• Goal: Formalize complex queries such as “event A occurs before B” 
• Goal: Leverage our formalism to produce methods for estimating 

complex queries that exist in exponentially large sequence spaces

* Denotes equal contribution                                                    {alexjb, showalte}@uci.edu

Probabilistic Queries Visualized

Introduction

Proposal Distribution

Query Estimation Methods

• A query  is defined as a subspace of sequence vocabulary  

 

• We seek to approximate queries of interest with the following 

 

• With this query formalism, we can decompose this process: 

 

• We seek other estimation methods beyond Monte-Carlo sampling: 

𝒬 𝕍K

𝒬 = ∪i 𝒬(i) where 𝒬(i) ∩ 𝒬( j) = ∅ for i ≠ j
and 𝒬(i) = 𝒱(i)

1 × 𝒱(i)
2 × … × 𝒱(i)

K       where 𝒱(i)
k ⊆ 𝕍 for k = 1,…, K

p*θ (X1:K ∈ 𝒬) = ∑
x1:K∈𝒬

p*θ (X1:K = x1:K) = ∑
x1:K∈𝒬

K

∏
k=1

p*θ (Xk = xk |X<k = x<k)

p*θ (X1:K ∈ 𝒬) = ∑
i

p*θ (X1:K ∈ 𝒬(i)) = ∑
i

p*θ ( ∩K
k=1 Xk ∈ 𝒱(i)

k )

p*θ (X1:K ∈ 𝒬) = 𝔼x1:K∼p*θ [1(x1:K ∈ 𝒬)]

 - Sequence of  random variables 
 - Discrete, fixed-size vocabulary 
 - Observed sequence history  
 - Query space for  where 

X1:K K
𝕍
ℋ x1:k

𝒬 X1:K 𝒬 ⊂ 𝕍K

 - Learned probability distribution 
 - Shorthand for  

 - Indicator function 
 - Query length

pθ

p*θ ( ⋅ ) pθ( ⋅ |ℋ)

1
K

Probabilistic Queries

• There are many queries of interest in sequence modeling, but all 
require marginalization over exponentially large path spaces

• Query estimation can be simplified with an autoregressive proposal distribution 
 whose domain matches that of subquery  q(i)( ⋅ ) 𝒬(i)

q(i)(X1:K = x1:K) =
K

∏
k=1

p*θ (Xk = xk |X<k = x<k, Xk ∈ 𝒱(i)
k )

=
K

∏
k=1

p*θ (Xk = xk |X<k = x<k)1(xk ∈ 𝒱(i)
k )

∑v∈𝒱(i)
k

p*θ (Xk = v |X<k = x<k)

• Importance sampling is a natural candidate to leverage proposal  

 

• Beam search can guarantee coverage by finding beams  

 

• Our novel hybrid method merges search and sampling by noting that:  

 

• Where  is the sequence set from beam search. We first search for likely 
sequences and then sample from the remaining space with  

• Ground-truth is often intractable to compute. We evaluate our methods against 
pseudo-ground truth (PGT) estimates generated with importance sampling  

• PGT leverages a high compute budget and the convergence guarantees of the CLT

q

p*θ (X1:K ∈ 𝒬) = |𝒬 | 𝔼x1:K∼𝒰(𝒬)[p*θ (X1:K = x1:K)] = 𝔼x1:K∼q[
p*θ (X1:K = x1:K)
q(X1:K = x1:K) ]

≈
1
M

M

∑
m=1

p*θ(X1:K = x(m)
1:K)

q(X1:K = x(m)
1:K)

 for x(1)
1:K, … , x(M)

1:K
iid∼ q

ℬ ⊂ 𝒬

p*θ (X1:K ∈ 𝒬) = ∑
x1:K∈𝒬

p*θ (X1:K = x1:K) ≥ ∑
x1:K∈ℬ

p*θ (X1:K = x1:K)

p*θ (X1:K ∈ 𝒬) = ∑x1:K∈ℬK
p*θ (X1:K = x1:K) + ∑x1:K∈𝒬∖ℬK

p*θ (X1:K = x1:K)

ℬK
q(X1:K = x1:K |X1:K ∉ ℬK)

Composability and Saving Computation
• More complex queries (e.g. ) can be decomposed into 

operations over hitting-time queries ( ) 

 

• For this reason, experiments focus on hitting-time queries  
• One can save computation between queries  and  by re-using 

sub-sequences of  on  if 

Q4, Q5
Q3

p*θ (τ(a) < τ(b)) =
∞

∑
k=1

p*θ (τ(a) = k, τ(b) > k) =
∞

∑
k=1

p*θ (Xk = a, X<k ∈ (𝕍∖{a, b})k−1)

Q Q′ 

p*θ (X1:K ∈ 𝒬) 𝒬′ 𝒱i = 𝒱′ i for i = 1, … , K − 1

Query Estimation Error

Relative Efficiency

(top) Illustration of a query for the probability of a given sentence "In my opinion..." ending in  steps. 
(bottom) GPT-2 I.S. estimates of 4 prefixes ( ). Relative efficiency over naive sampling is 6+.

K
|𝕍 | = 50,257

Query Estimation and Entropy

0 10 20 30
0.0

0.5

1.0

R
el

at
iv

e
A

b
s.

E
rr

or

Reviews

(a)

0 10 20 30
0.0

0.5

1.0
MOOCs

0.01 0.1 0.5 0.75 1.0 1.25 1.75 2.0 3.0 4.0 5.0 10.0

Temperature T
(b)

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or

Method

Importance Sampling

Beam Search
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(left) Median relative absolute error (RAE) vs restricted entropy per query (with best 
linear fits), (right) Median RAE v. model temperature  for Mobile Apps data. Beam 
search error highly correlates with entropy, and increasing  induces 100% error.

T
T

Median rel. efficiency of importance sampling for all datasets. For the regime of  where 
computing ground truth is intractable, we see a significant boost over naive sampling.

K

Median relative absolute error (RAE) for for hitting-time query estimates over 4 datasets 
and 3 estimation methods. Hybrid method outperforms others including naive sampling. 
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