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e Autoregressive models capture detailed information about future events. History H K —1 Unknown Tokens, O(VX~1) Possibilities Query Event = "] Reviews | MOOC ‘ | shakespear | Mobile Apps

e To-date, investigation is centered solely on next-event prediction. = os- '

Token: opinion 77 77 77 777 <EOS>

e Goal: Formalize complex queries such as “event A occurs before B”
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e There are many queries of interest in sequence modeling, but all pseudo-ground truth (PGT) estimates generated with importance sampling e One can save computation between queries Q and Q’ by re-using

require marginalization over exponentially large path spaces e PGT leverages a high compute budget and the convergence guarantees of the CLT sub-sequences of p*(X,x € Q) on Q" if 7, =7 for i =1, , K—1



