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Abstract

With the advent of global communication, it
has become standard to disseminate informa-
tion about a crisis immediately on social me-
dia, particularly Twitter. This information
is decentralized, uncurated, and disorganized,
which can lead to confusion and panic. Orga-
nizing tweets into humanitarian categories is
essential for ensuring a timely and thorough
response to tragedy as many aid groups often
align to specific humanitarian needs (e.g. in-
jury, property damage, rescue, etc.). This cru-
cial step in crisis response — extracting and
organizing information to inform aid groups
and gather resources — can be automated with
Natural Language Processing (NLP). In com-
parison to previous work, we take a novel ap-
proach to extracting Twitter information by
framing the objective as sequence tagging,
where a model assigns each token its most rel-
evant humanitarian label. In doing so, we con-
fer two beneficial properties. Since tagging is
done per token, information on a crisis can be
organized at a more granular level. Moreover,
this approach is not reliant on a particular lex-
icon or form, and can be generalized to new
texts including news, blogs, and other sources.
However, the only crisis data currently avail-
able tags entire sequences with a single label.
We circumvent this issue by defining a novel
data augmentation approach to convert our
problem into a sequence tagging scheme, and
quantitatively validate its efficacy on HumAID,
the largest dataset of labeled crisis tweets
ever collected. Our code can be found here:
https://github.com/samshowalter/nltweetrelief

1 Introduction

Swift and comprehensive response to disaster situ-
ations is crucial for maintaining safety in society.
However, it can be difficult to quickly understand
the full extent of a disaster, as the severity may not
be immediately known. Compounding this effect,
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the most current information on a crisis is usually
posted to Twitter, often with little organization or
structure. However, progress in deep learning and
NLP has enabled scientists to categorize tweets to
improve disaster response. In particular, connect-
ing crisis information on social media to humani-
tarian causes is an ongoing body of research.
Nevertheless, no researchers have framed this
problem as sequence tagging and instead generalize
humanitarian semantics across an entire passage,
sentence, or tweet. This is an incorrect assumption
that can lead to information loss and confusion. Hu-
manitarian topics are often mentioned together in
crisis messages, and categorizing an entire phrase
with one label does not adequately separate this
information. For example, the phrase “Our hearts
go out to those affected by the fire that has injured
12 citizens; several people are still missing and
we will begin a search.” includes three humani-
tarian labels as defined by our dataset HumAID -
sympathy, injury/death, and missing people. Most
crisis systems today would consider the phrase as a
whole and fail to identify and separate the diversity
of information. This is due in large part to a lack
of crisis datasets that model information extraction
as a sequence tagging objective. This gap should
be filled; as shown in the example, humanitarian
topics are correlated in most crisis messages, mak-
ing organization of information difficult and topics
entangled. Fortunately, HumAID provides an excel-
lent opportunity to fill this gap programmatically.
The dataset consists of over 40,000 tweets and is
carefully curated for consistency, since each tweet
primarily aligns with a single humanitarian cause.
With data augmentation, we can alter HumAID to
provide a sequence tagging dataset. Our approach
does not negate the need for a human-labeled se-
quence tagging dataset of crisis information, but
rather illustrates a cheap method of generating a
proxy. In turn, our contributions are as follows:
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1. Formalize crisis information extraction as a se-
quence tagging objective and justify the need
for this more granular approach

2. Define a novel data augmentation algorithm
that converts single-label crisis tweets into a
format conducive for sequence tagging

3. Verify SOTA NLP models effectively gen-
eralize from augmented datasets with boot-
strapped uncertainty bounds to new crises

4. Qualitatively and quantitatively verify that cri-
sis sequence taggers trained from Twitter can
transfer effectively to other lexicons

2 Related Work

Multilabel classification has been previously ex-
plored to extract crisis information (Schulz et al.,
2014), but not in the context of using modern lan-
guage models or sequence tagging. Unsupervised
information extraction from crisis tweets has also
been applied to rank their importance (Interdo-
nato et al., 2018), but not necessarily to categorize
them by humanitarian topic. This rank was also
applied to the entire tweet and did not identify the
most salient tokens. Effective methods for assess-
ing tweet relevance to a crisis have recently been
developed as well (Kruspe et al., 2020), but are not
useful in organizing information to facilitate a re-
sponse. Mapping crises with Twitter’s geolocation
data (Middleton et al., 2014) takes a spatial ap-
proach to this problem, which has been included in
holistic report creation from summarized text (Di
Corso et al., 2017). Unfortunately, these reports
attempt to encompass all information and do not
separate it along humanitarian topics, which makes
it more difficult for agencies to ensure a swift re-
sponse. For example, a deluge of information on
missing persons is not relevant for an agency that
specializes in infrastructure restoration. Access
to this information can become a hindrance if it
obscures the most salient information an agency
needs. Instead, effective organization of informa-
tion by humanitarian topic may facilitate an accel-
erated and thorough response.

3 Experimental Design

3.1 Dataset

HumAID (Firoj Alam, 2021) is the largest collec-
tion of disaster related tweets, containing 19 ma-
jor natural disaster events (e.g. Ecuador earth-
quake, Hurricane Florence, California wildfires,

etc.) that occurred between 2016-2019. For each
tweet, it also includes annotations of humanitarian
categories (e.g. loss of life, injury, property dam-
age, etc.), one per tweet. This dataset was recently
released on April 8th, 2021 and represents the most
comprehensive collection of crisis text.

3.2 Data Augmentation

It is common for news updates about a crisis to
discuss multiple humanitarian categories together.
Ideally, an information extraction system would
be able to label the portions of text corresponding
to each category at the lowest granularity possible.
Instead of attempting to classify tweets in a unilabel
or multilabel objective, we feel an optimal system
should be designed as a sequence tagger.

We believe that the release of the HumAID
dataset presents an opportunity to develop a se-
quence tagging NLP system that can achieve these
goals. It is important to note each tweet in the
dataset belongs to a specific disaster and a single
humanitarian category. Since each tweet in our
dataset is aligned with a single humanitarian label,
we define a data augmentation approach that sam-
ples sets of tweets within a given crisis of varying
size. With a varying number of randomly sampled
tweets, we then create passages — collections of
tweet sequences from a single crisis concatenated
together — that serve as our augmented training sam-
ples. For each tweet, the label is broadcasted across
the sequence. This makes the large assumption that
each tweet is semantically homogeneous relative to
its label. While HumAID was curated meticulously,
we find that this is not always the case. However,
when trained on a large, augmented dataset, our
models are not greatly affected by this assumption.

After training this data on all disasters up to
2019, we evaluate the system on generated pas-
sages for disasters occurring from 2019 onward.
There are several benefits to this data augmentation
objective, including a training dataset of virtually
unlimited size. Additionally, we feel that training
models on a dataset of sequence-tagged passages
will allow for more complex, real-world use cases.

In our approach, we only ensure each passage
was drawn from the same crisis. Therefore, one lim-
itation is that generated passages may sometimes
lack natural flow and cohesiveness, since they are
synthesized. However, crisis information often ap-
pears in this form anyway, due to the rushed nature
of the release.
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Figure 1: Conceptual overview of experimental pipeline, including data augmentation, training, and testing

Algorithm 1 Data Augmentation Algorithm

Init 7. = Tweet set for crisis ¢, Ve € C
tweet_num ~U{2,...k}
crisis_event ~U{l,...,[C|}
Init batch_size, num_batches

for ¢ in num batches do
for jinbatch_size do

Sample ¢t ~ tweet_num

Sample c ~ crisis_event

Sample {woe, Wic, .oy Wie} ~ Te

for w;. Vj € {0,...,t} do

Wijc = tokenize(wj.)
lic =Dbroadcast(ljc X [Wjc|)

end for
end for
b; = Cat((wjc, b)) Vi
end for
B = Cat(bi) Vi
return B

3.3 Processing Tweets

Compared to literary texts or news articles, tweets
require nuanced tokenization. We leveraged
NLTK'’s tweet tokenizer with a few additional pro-
cessing steps to better handle Twitter-specific con-
tent (e.g. preserving hashtags, removing mentions,
formatting numbers, encoding emojis, and remov-
ing unknown characters/symbols).

3.4 Evaluation Plan

One way to frame this problem on augmented data
is through multilabel classification, where we pre-
dict the various humanitarian categories present in
a passage. While multilabel classification helps
with identifying the salient themes as a whole, it
does not help with the task of explicitly separating

crisis information by topic. Instead, sequence tag-
ging is a more applicable and promising approach.
For a given sequence of tokens, x = x1, ..., Ty, se-
quence tagging predicts a sequence of labels of the
same length, y = 41, ..., yn, Where y; € {1...L}
are the labels of interest. In our case, each word in
a passage is tagged with a single humanitarian label
corresponding to the humanitarian category of the
original tweet the word belongs to, and our goal is
to predict these tags. This approach can be used to
disentangle topics and by doing so should ideally
recover the original, independent tweets present in
a passage. While this might seem counterintuitive
or circular, it effectively converts our problem into
sequence tagging. Most importantly, with an effec-
tively pretrained model like BERT we show that we
can generalize from this contrived sequence data
to learn intra-sequence semantic shifts in unseen
messages, and effectively extract them.

Furthermore, we qualitatively analyze how well
these models adapt to new lexicons when applied
to longer articles. This evaluation is particularly
important for two reasons. First, generalization on
past crises does not imply effective future predic-
tion. Therefore, it is essential that our model can
generalize beyond its training crisis set, which we
test with four held-out crises from 2019. It should
also be able to generalize to unseen information
from new lexicons beyond Twitter, which we eval-
uate using curated examples.

4 Results and Discussion

4.1 Model Training and Evaluation

Effective generalization is particularly difficult to
achieve in sequence tagging due to the large vari-
ation present in the input. This difficulty is com-
pounded as the number of potential tags grows. For



Precision Recall Accuracy F1
AIBERT 55.29/46.01 55.64/44.87 55.64/44.87 55.0/44.63
0.7)/(0.95) (0.67)/(0.8) (0.67)/(0.8) (0.71)/(0.83)
DistilBERT 92.7/65.11 92.69/64.72 92.69/64.72  92.67/64.79
(0.46) / (0.88) (0.45)/(0.85) (0.45)/(0.85) (0.46)/(0.86)
DistilRoBERTa  93.55/67.97 93.49/66.7 93.49/66.7 93.5/67.1
(0.38)/(0.79) (0.39)/(0.81) (0.39)/(0.81) (0.39)/(0.8)
SqueezeBERT  92.85/65.82 92.78/64.14 92.78/64.14 92.79/64.71
(0.44)/(0.86) (0.44)/(0.78) (0.44)/(0.78) (0.44)/(0.81)
LSTM 1631/19.69 12.44/10.56 12.44/10.56 10.75/9.88
(baseline) (0.62)/(0.75) (0.3)/(0.27)  (0.3)/(0.27)  (0.27)/(0.24)

Table 1: Mean and (standard deviation (std.)) performance on dev and test data for a selection of SOTA models
and an LSTM baseline. The average support size of each dataset is also provided. Results were extracted from
100 trials of validation sets of 30 batches, each containing 32 passages. Mean and (std.) support (# of tokens) for

datasets was 6,881,956 and (104,283) respectively. Models built from pretrained HuggingFace Transformers.

HumAID, we tag our tweets with one of ten labels,
shown in Table 3 below. As a baseline, we include
a LSTM in our model set. In addition, we make
use of pretrained DistilBERT and DistilRoBERTa
models. BERT is considered the state of the art
in many NLP tasks, including sequence tagging.
DistilRoBERTa is a derivative built to handle par-
ticularly large sequences.

To assist these models in generalizing to new
crises and lexical forms, we generate a completely
unique augmented training set for every epoch. All
models were trained for 500 epochs, and then eval-
uated on held-out validation data pulled from the
same crises as the training set. Additionally, data
augmentation enables us to bootstrap uncertainty
bounds. Shown in Table 1, we display the mean and
standard deviation of model performance over 100
generated validation datasets of 30 batches, each
with 32 samples. The same process is conducted
for test datasets, which generate passages from a
completely unseen set of crises. Interestingly, the
average tweet length of these held-out crises ap-
pears much larger than the validation dataset’s, as
indicated by the mean support size.

Impressively, both BERT models are able to
achieve validation performances beyond 90%, far
better than the LSTM’s generalization capabil-
ity. However, performance decreases substantially
when applying the models to new datasets. Even
so, model performance still remains near 70% and
is predictive enough to be applied effectively in
practice, as shown by our qualitative results.

Tag Prec. Rec. F1 %
Rescue, 83.54 79.09 81.25 36.06
Don. & Vol. (1.01) (1.19)  (0.87)  (0.97)
Inj. or 77.51 83.44  80.32 437
Dead ppl. 322 244 (.14 (0.31)
Disp. ppl. 77.23 83.2 80.07 6.1

& Evac. 2.68) (244 (.02) (04
Sympathy 7438  71.8 73.05 12.68
& Supp. (2.03) (1.83) (1.43) (0.66)
Missing 7024 79.41 7137  0.03
People (19.95) (19.81) (16.59) (0.02)
Property 65.96 59.98 62.76  7.11
Damage (298) (3.28) (247 (043)
Caut. & 55.89 5874 5722 813
Advice (335 (2.83) (254 (0.57)
Other 38.91 44.18  41.35 15.06
Rel. Info (2.15) (2.12) (1.86) (0.61)
Req. or 5226 3247 3996 241
Urg. Needs (5.59) (4.08) (4.34) (0.27)
Not 33.83 4299 378 8.05
Humanit. (3.11)  (3.61) (299 (0.52)

Table 2: Mean and (standard deviation) performance
of DistilRoBERTa on test crisis data separated by label
as well as percent composition in the dataset, sorted by
F1 Score in descending order, Results extracted from
100 trials of validation sets of 30 batches, each contain-
ing 32 passages. Bolded topics represent more abstract
concepts, likely contributing to the relatively poor per-
formance.



Year Prec. Rec. F1

Canada 2016 7594 75.8 75.56
Wildfire 2016 (1.51) (1.40) (1.40)
Mexico 2017 81.31 79.37 80.0

E-quake 2017 (1.48) (1.35) (1.39)
Kerala 2018 67.6 62.56 64.18
Floods 2018 (1.45) (1.39) (1.36)
H-cane 2019 57.62 57.79 56.97
Dorian 2019 (1.59) (1.52) (1.58)
Mean - 70.62 68.88 69.18
Crisis - (1.51) (@1.42) (1.43)

Table 3: Mean and (standard deviation) performance of
DistilRoBERTa on unseen test crises. Results were ex-
tracted from 100 trials of validation sets of 30 batches,
each containing 32 passages.

Further evidence that validates our data augmen-
tation protocol can be seen in the standard deviation
metrics we track on model performance. With each
passage essentially guaranteed to be unique, these
models witness a tremendous amount of variation
when evaluated on augmented datasets. Regard-
less, performance across all metrics never varies by
more that 1% in standard deviation, verifying this
protocol can train a robust sequence tagger by aug-
menting a unilabel dataset. This robustness appears
even more pronounced when examining per-crisis
metrics on the validation dataset.

However, when generalizing to new crises, per-
formance of these models becomes far more vari-
able. It appears that the models are able to
understand semantic information about specific
crises during training and apply this at test time,
leading to a noticeable performance gap between
seen and unseen crises at test time. We ex-
plore overfitting further by stratifying performance
by humanitarian label for training and testing
sets, shown in Table B.4 in the appendix. Or-
dered by test F1 score in descending order, we
see that performance begins to drop dramatically
as the humanitarian topic becomes more vague
(topic bolded). For example, language about
injured or dead people is fairly prescrip-
tive in nature, and the model detected it with
far higher performance than other relevant
information or not humanitarian. Intu-
itively, this is somewhat expected. For many NLP
applications, performance suffers as the task be-
comes more abstract.

4.2 Transitioning to New Lexicons

As mentioned in our introduction, a current gap
in crisis NLP is a lack of granularity in extracting
disaster information. To address this, let us return
to our hypothetical example sentence. When fed
through DistilRoBERTa, we achieve the follow-
ing: “Our hearts go out to those affected by the
fire that has injured 12 citizens; several people
are still missing and we will begin a search.” for
topics sympathy, injury /death, and missing people.
With only a small mis-classification error on setup
words (”that”,’has”), DistilRoBERTa is able to ex-
tract the relevant humanitarian details crucial for
response. This is particularly impressive, since the
training data it was exposed to simply concatenated
tweets and never included compact topic switching.
The fact DistilIRoBERTa can identify humanitarian
topic switches in only a few tokens speaks to its
comprehensive pretraining as well the efficacy of
our data augmentation system. When no sequence
tagging data exists for crisis (as it does today), our
framework appears to be a viable alternative.

Now let us move beyond this toy example. Con-
sider the following examples using DistilIRoBERTa
on a Wikipedia article on Hurricane Dorian and a
BBC release on Mexico’s Puebla Earthquake. Col-
ors denote the following tags: injury/death, evacua-
tion, caution/advice, infra./util. damage, rescue/vol.
effort, and other relevant information. No topic
flips occur during redacted . . . sections.

Hurricane Dorian Wikipedia Article

In preparation ... [many states] declared
a state of emergency and [many] ... is-
sued evacuation orders. [Dorian] made
landfall in the Bahamas in Elbow Cay, ...
and damage ... was catastrophic due to
the intense storm conditions ... with thou-
sands of homes destroyed and at least 77
direct deaths were recorded.

Mexico Puebla Earthquake BBC Article

Elsewhere 15 people were killed when a
church ... collapsed during Mass. Puebla
governer was quoted ... saying [a] vol-
cano [nearby] had a small eruption as
a result of the tremor ... [and] schools
would be closed and public transport
would be free to allow people to get
home. Emergency workers have been
searching through the night ...




Prec. Rec. Fl1 Partial Total Mean >1Tag Tag Seq. #
Seq. Seq. Flips Seq. % Streak Len.  Toks.
Mex. E-quake  70.56 71.81 68.39 87.65 40.74 095 58.02 12.50 23.60 1912
Canada W-fire 80.75 79.14 79.43 9155 50.70 0.66 4648 22.83 40.85 2900
Kerala Floods 7490 77.57 7544 8571 6508 0.14 11.11 29.09 3397 2140
H-cane Dorian 72.70 63.73 60.20 73.86 34.09 0.59 37.50 17.75 28.23 2484
Mean Crisis  74.73 73.06 70.87 84.70 47.65 0.59  38.28 20.54 31.66 2359

Table 4: Performance and descriptive statistics of 12 manually labeled news articles (3 for each crisis). In addition
to traditional performance, partial and total sequence examine the percent of sequences the agent labeled partially
and totally correct. In addition, for each crisis the mean number of topic flips per sequence, as well as the per-
centage of sequences with >1 tag, are recorded. Lastly, we note the mean tag streak, sequence length, and the

support.

Wikipedia and news articles are typically used
to provide a comprehensive, dense overview of a
topic, making it a useful testing ground for our se-
quence tagger. Our qualitative findings, highlighted
above, are compelling. It is clear that our tagger
does not rely on contrived phrases (e.g. tweets or
sentences) or structure. Instead, it extracts infor-
mation semantically, flexibly switching topics as
necessary. In order to further strengthen our analy-
sis of new lexicons beyond qualitative review, we
also manually collected and annotated 12 articles
— three for each held-out test crisis. These articles
were taken from a variety of sources, including
major news outlets, blogs, and Wikipedia. In to-
tal, this totalled nearly 10,000 tokens of text for
classification, as shown in Table 4.

Though a fair amount of variation still exists, the
mean performance across our labeled news articles
was very similar to the held-out performance on
tweets. In fact, the overall performance was slightly
better, indicating that perhaps formal articles are
easier to parse than free-form tweets.

Additionally, we document salient features of
news article structure. First, we note that the per-
centage of sequences in an average news article
that contain multiple topics (and hence would re-
quire sequence tagging) is non-trivial at roughly
38%. The tag streak data further increases our level
of granularity in this exploration and denotes the
mean continuous streak of tokens for a topic before
a flip occurs relative to average sequence length.

When compared to our held-out tweet dataset,
these articles bear many structural differences.
There is a wide variety in the homogeneity of se-
quences. Articles on Kerala Floods rarely saw
topic changes (0.14 mean flip rate), while Mex-

ico’s Earthquake had an average of nearly one per
sequence. Furthermore, the label composition of
this dataset was far different than the tweet data,
with other relevant information com-
prising over 37% of the dataset. This represented
the most notable failure mode of the model. For
long-form news, there is far more ancillary infor-
mation provided — testimonials, quotes, opinions,
etc. It was challenging for our model to determine
what should be considered relevant information
and what should not. With other relevant
information and not humanitarian rep-
resenting negation categories from the other tags,
the most common failure was mistaking a more ex-
plicit category for other relevant information, and
vice versa. Even so, performance on this new lex-
icon as a whole was both consistent with original
test-set findings and robust. There were no discern-
able trends between performance and the type of
crisis, the year, or the medium of communication.

5 Conclusion

Information extraction during a crisis is a challeng-
ing problem. Commonly, writers will frantically
post messages to social media that contain informa-
tion on a variety of humanitarian topics. In many
cases, this leaves unilabel classification insufficient
for information extraction. Alternatively, no se-
quence tagging dataset currently exists for crisis
information. We demonstrate that in this absence
our data augmentation protocol with a large dataset
can simulate sequence tagging data and train a lan-
guage model to generalize to new crises as well as
lexicons. While there is still room for improvement
in generalization performance on unseen tasks, we
believe that this approach provides a solid founda-
tion upon which further advances can be made.
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A Selected Article Confusion Matrix

The figures below show the confusion matrix for
the 12 selected and manually annotated articles of
the 4 held-out crises. As a reference, the index-
legend lookup table is provided below

Decoded Tag Name

0 | Caution and Advice

1 | Displaced People and Evacuations

2 | Infrastructure and Utility Damage

3 | Injured or Dead People

4 | Missing or Found People

5 | Not Humanitarian

6 | Other Relevant Information

7 | Requests or Urgent Needs

8 | Rescue, Volunteering, or Donation Effort
9 | Sympathy and Support

Table 6: Index and corresponding expanded name of
all tags utilized in the HumAID dataset. For brevity,
these are shortened in the article body, but the semantic
meaning should be clear.

B Model Performance by Crises, Dev

On the following page, we provide the per-crisis
performance on the validation datasets, broken out
by validation crises. These crises, but not the spe-
cific tweets examined, were seen at training time.
As shown, SOTA NLP models can easily general-
ize to language on seen crises. Performance drops
substantially for unseen test crises, but still remains
useful for real-world application.

0 1 2 3 4 5 6 7 8 9
0 813 27 6 0 0 74 407 0 38 0
1 1 514 0 0 O 5 4 0 23 0
2 5 44 891 9 4 23 103 20 17 0
3 0 30 21 537 16 47 59 0 8 0
4 0 0 0 0 0 0 0 0 0 0
5 22 17 0 0 0 473 71 0 19 0
6 131 58 8 22 0 836 2747 14 58 2
7 0 0 0 0 O 0 0o 9 8 0
8 0 48 4 0 0 0 26 0 747 0
9 0 0 0 13 0 12 47 0 0 180

Table 5: Confusion matrix for manually labeled articles
for four held-out test set crises. Correct predictions are
bolded along the trace of the matrix, and the index ref-
erence legend for the labels can be found below.
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Year Precision Recall Accuracy Fl1

Hurricane 2016 93.33 9294 92.94 93.0

Matthew 2016 (1.51) (1.61) (1.61) (1.58)
Italy 2016 95.98 9591 95091 95.85
Earthquake 2016 (1.02) (1.0) (1.0) (1.04)
Kaikoura 2016 91.93 91.4 91.4 91.52
Earthquake 2016 (1.56) (1.61) (1.61) (1.6)

Ecuador 2016 96.44 96.36 96.36 96.33
Earthquake 2016 (0.94) (0.94) (0.94) (0.95)
Hurricane 2017 92.16 91.93 91.93 91.89
Harvey 2017 (1.31) (1.39) (1.39) (1.4)

Hurricane 2017 91.43 91.18 91.18 91.19
Irma 2017 (1.49) (1.53) (1.53) (1.54)
Hurricane 2017 91.92 91.58 91.58 91.59
Maria 2017 (1.51) (1.56) (1.56) (1.55)
Srilanka 2017 95.26 94.92 9492 9491
Floods 2017 (1.06) (1.14) (1.14) (1.14)
California 2018 914 91.1 91.1 91.08
Wildfire 2018 (1.39) (1.45) (1.45) (1.45)
Hurricane 2018 91.15 90.8 90.8 90.83
Florence 2018 (1.56) (1.61) (1.61) (1.61)
Cyclone 2019 94.28 94.18 94.18 94.06
Idai 2019 (1.32) (1.32) (1.32) (1.37)
Midwest U.S. 2019 91.13 90.56 90.56 90.58
Floods 2019 (1.78) (1.92) (1.92) (1.93)
Pakistan 2019 94.45 94.06 94.06 93.95

Earthquake 2019 (1.11) (1.31) (1.31) (1.33)

Table 7: Mean and (standard deviation) performance of DistilRoBERTa on dev set crises. Results extracted from
100 trials of validation sets of 30 batches, each containing 32 passages.



